Table I

R in RLi	Solvent, temp. ^o C	Reaction time. days	Product	Yield, $\%$
$n\text{-}\mathrm{C}_4\mathrm{H}_9$	$Hexane-THF. -30$		$n\text{-}\mathrm{C}_{\mathrm{s}}\mathrm{H}_{\mathrm{H}}\mathrm{N}\mathrm{H}\mathrm{CH}_{\mathrm{s}}$	50
$sec\text{-}C4H9$	$Hexane-THF, -30$		C_2H_5CH (CH ₃) CH ₂ NHCH ₃	68
$\rm{C_6H_5}$	$7:3$ benzene-ether and THF, 0		$CsHsCHsNHCHs$	75

ric triamide in a **2:l** ratio, gave the homologous N-methylamines in **50-75%** yield, as summarized in Table I.

In addition to being of potential synthetic value, these findings show that HMPTA in the presence of an alkyllithium is an *in situ* source of the very unstable species $CH_3N=CH_2$. Although this compound has been prepared^{4,5} and studied spectroscopically,^{5,6} it polymerizes^{4,7} near its boiling point of -35° . Our findings also constitute a *caveat* to investigators who wish to use HMPTA as a solvent for organoalkali reagents, although we must emphasize that the less reactive lithium compounds **1** and **2** are stable in HMPTA for prolonged periods of time at O'C and room temperature, respectively.

Experimental Section

N-Methyl-N-(2-methyl) butylamine. A dry 200-ml roundbottom flask containing a Teflon-coated magnetic stirring **bar** was capped with a rubber septum and flushed with dry nitrogen usinghypodermic needles; then sec-butyllithium (50 ml, 0.8 M in hexane, 0.04 mol) was introduced into the flask with a syringe. The solution was cooled by immersion in a cooling bath at -30° and diluted with 25 ml of tetrahydrofuran (THF). A solution of 3.6 g (0.02 mol) of HMPTA in 15 ml of THF was then similarly added slowly with cooling and vigorous stirring. The mixture was placed in the deep freeze at -30° for 4 days and then quenched by the addition of several ml of water with continued cooling. The product was extracted from the solution with ether using continuous liquid-liquid extraction. The ether layer was dried over magnesium sulfate, the solvents were removed with a fractionating column, and the residue was distilled, bp 107°, to yield 1.7 g of material of 80% purity (glpc) (68% yield). The material was purified by preparative gas chromatography (10 ft \times % in. 20% SE-30 on 60-80 mesh Chromosorb A): ir 745 cm⁻¹ (s, broad), 1110 (m), 1140 (m), 1160 (m), 1385 (m), 1470 (s), 2800 (s), 2885 (s), 2940 (s), 2965 (s), 3290 cm $^{-1}$ (w); nmr 0.65–1 (m, 7 H, reduced to 6 H by D $_2\mathrm{O}$ exchange), 0.9-1.7 (m, 3 H), 2.48 ppm (s, and overlapping m, total 5 H). The picrate melted at 102-103° after three recrystallizations from benzene.

Anal. Calcd for $C_{12}H_{18}N_4O_7$: C, 43.64; H, 5.49. Found: C, 43.43; H, 5.55.

An authentic sample of the amine was prepared by treating 2 methylbutanoyl chloride with aqueous methylamine and sodium
hydroxide⁸ to give the N-methylamide, bp 70° (1 mm) [lit.⁹ 70° (1 mm)] in 85% yield; reduction of the amide with ethereal lithium aluminum hydridel0 gave **N-methyl-N-(2-methyl)butylamine** in 80% yield, bp 107°. The nmr and ir spectra of this sample were identical with those described above.

N-Methyl-N-amylamine was similarly prepared from 0.1 mol butyllithium (50 ml, $2M$ in hexane) in 25 ml of THF and 8.95 g (0.05 mol) of HMPTA in 25 ml of THF. The product collected on distillation weighed 2.72 g (50%): bp 116–118° (lit.¹¹ bp 116–118°); picrate mp 123.5-125.5° (lit.¹¹ mp 119-120°); nmr 0.6 (s, 1 H, disappears upon DzO exchange), 0.75-1.08 (m, 3 H), 1.16-1.5 (m, 6 H), 2.38 (s, 3 H), 2.4-2.72 ppm (m, 2 H).

N-Methyl-N-benzylamine was prepared from 0.06 mol of phenyllithium (33.3 ml of 1.8 M solution in 7:3 benzene-ether) diluted with 20 ml of THF and 5.38 g (0.03 mol) of HMPTA in 20 ml of THF to give 3.2 g of 85% pure material $(75\% \text{ yield})$: bp 80 $^{\circ}$ (25 mm) [lit.¹² bp 184-185° (749 mm)]; ir (material purified by glpc) identical with that of an authenic sample;¹³ nmr 1.38 (s, 1 H, disappears upon D_2O exchange), 2.44 (s, $3 H$), 3.74 (s, $2 H$), 7.4 ppm $(s, 5 H)$.

thiane **(4).** r-2, cis-4, **cis-6-Trimethyl-1,3-dithiane** (243 mg, 1.5 mmol) was dissolved in 10 ml of a THF-HMPTA mixture (2:1) contained in a 25-ml round-bottom flask capped with a rubber septum and flushed with nitrogen as described above. Butyllithium (1.3 ml, 2.4 M solution in n-hexane, **3** mmol) was added and $r-2$ -Methylaminomethyl-2,cis-4,cis-6-trimethyl-1,3-dithe mixture kept at -30° for 20 hr and then added to rapidly stirred D_2O . The product was extracted three times with 10 ml of hexane, the combined extracts were washed twice with 10-ml portions of water and dried over sodium sulfate, and the solvent was evaporated at water aspirator pressure. The product appeared homogenous upon gas chromatography on a 25 ft \times 1/₈ in. 25% QF-1 on Chromosorb **W** column at 120': ir 730 (m), 780 (m), 1025 (m), 1065 (m), 1105 (m), 1145 (m), 1245 (s), 1370 (m), 1440 (s), 2780 (m), 2860 (s), 2910 (s), 2950 (s), 3300 cm-I (w, broad); nmr 1.25 (d, $J = 7$ Hz) and 0.83-1.5 (B part of AB, total of foregoing peaks, 7 H), 1.84 (s, 3 H), 2-2.35 (A part of AB) and 2.23 (s) (total of these two peaks 3 H), 2.59 (s, 3 H), 3.0 (s, 2 H), 2.83-3.5 ppm (m, 2 H). The picrate melted at $180.5-182^\circ$

Anal. Calcd for $C_{15}H_{22}N_40_7S_2$: C, 41.47; H, 5.07. Found: C, 41.42; H, 5.10.

Acknowledgment. This work was supported under NSF Grant GP-35669, and is taken, in part, from the Ph.D. dissertation of Anthony G. Abatjoglou (University of Notre Dame).

Registry **No.+** 51932-18-4; **4** picrate, 52019-82-6; HMPTA, 680-31-8; **N-methyl-N-(2-methyl)butylamine,** 22431-10-3; *N***methyl-N-(2-methyl)butylamine** picrate, 51932-20-8; N-methyl-N-amylamine, 25419-06-1; N-methyl-N-amylamine picrate, 51932-21-9; N-methyl-N-benzylamine, 103-67-3; r-2, cis-4, cis-6 trimethyl-1,3-dithiane, 22452-27-3.

References and Notes

- (1) A. G. Abatjoglou, unpublished observations; *cf.* E. **L.** Eliel, *Tetrahedron,* **(2)** E. L. Eliel, A. A. Hartmann, and A. G. Abatjoglou, *J. Amer. Chem. SOC.,* **30, 1503 (1974).**
- **96, 1807 (1974).**
- **(3)** P. Savignac and **Y.** Leroux, *J. Ofganometal. Chem., 57,* **C47 (1973). (4)** J. L. Anderson, U. *S.* Patent **2,729,679 (1956);** *Chem. Abstr.,* **50,**
- **12097d(1956).**
- *(5)* J. Meier, F. Akermann, and Hs. H. Gunthard, *Helv. Chim. Acta,* **51, 1686**
- (1968).
(6) C. F. Chang, B. J. Fairless, M. R. Willcott, R. F. Curl, Jr., J. Hinze, D. F.
Koster, and A. Danti, *J. Mol. Spectrosc.*, 22, 112 (1967).
(7) W. J. Bailey and R. E. Hartz, *Polym. Prepr., Amer. Chem. Soc., Div.*
-
-
-
- (1947).

(9) W. Dannhauser and G. P. Johari, *Can. J. Chem.*, **46**, 3143 (1968).

(10) C. A. Cope and E. Ciganek, "Organic Syntheses," Collect Vol. IV,

Wiley, New York, N. Y., 1963, p 339.

(11) K. Löffler, *Ber.*, **43**,
-
- - **Novel Synthesis of Substituted Thioacylureas.**

Reaction of Aryl and Alkyl Thioamides with Aryl Isocyanates

Victor Israel Cohen

Organic Chemistry Laboratory, Sciences Faculty *of* Meshed, Meshed, Iran

Received April 22, 1974

The preparation of acylureas from amides and aryl and alkyl isocyanates has been described by B. Kühn,^{1,2} and extended by P. F. Wiley.³ However, when aliphatic or aromatic thioamides are refluxed with aryl isocyanate in benzene or toluene, loss of H₂S from the thioamide occurs and symmetrical diarylurea is obtained from the reaction of isocyanate and H_2S .⁴

*^a*Analyzed within **zt0.470** for C, H, N, and S, except **6.** Calcd for 6: C, **59.11; H, 4.29;** N, **9.18; S, 10.49.** Found: **C, 58.75;** H, **4.17; N, 9.89; S, 9.25.** *b* **J.** Goerdeler and H. Schenks report mp **214".**

We have now found that in the presence of $Cu₂O$, the reaction of thioamides and aryl isocyanates provides a satisfactory preparation of thioacylureas for which we propose the following scheme. $Cu₂O$ is specific catalyst for this reac-

$$
R-C\n\begin{array}{ccc}\nS & & S & & \\
\hline\n\ddot{N}H_2 & & & & \\
\hline\n& & & & & \\
\hline\n& & & & & \\
R = \text{alky or aryl}\n\end{array}
$$

tion-perhaps because of its ability to form complex with thioamide $C=$ S bond and permit nitrogen unshared electron pair attack at carbon isocyanate C=N bond.

The spectra of the thioacylureas (Table I) showed a thiocarbonyl absorption band at $1240-1205$ cm⁻¹ and carbonyl absorption at 1700-1690 cm⁻¹; the intensity ratio $v_{C=0}$ / $v_{C=5}$ is \sim 1.4. The related disubstituted ureas show carbonyl absorption at 1650-1610 cm-1.

The reaction of aryl isothiocyanates with alkyl- and arylthioamides provides a general method for preparing substituted thioacylureas. Previous preparation have involved the addition of amines to thiobenzoyl isocyanate⁵ or less direct methods.6-8

Experimental Section

General. Melting points were measured on a Kofler hotbench apparatus. A Beckman IR-20A spectrophotometer was used for ir spectra, which were run in KBr. Microanalyses were performed by CNRS (Service Central de Microanalyse; **2,** rue Henry-Dunant, 94-Thiasis, France).

Commercially available aryl isocyanates and thioacetamide were used as received. Arylthioamides were prepared by established procedures.⁹ Useful solvents for the reaction are benzene, toluene, and xylene; 100 mg of Cu₂O as catalyst was used per mole of reactant. To avoid side reactions, dry solvents should be used for reflux and recrystallization. In a typical example a solution of **0.75** g (0.01 mmol) of thioacetamide, 1.6 g (0.01 mol) of α -naphthyl isocyanate, and **10** mg of CuzO in 10 ml of anhydrous xylene was heated under reflux for 1 min. The reaction was filtered. Recrystallization from anhydrous xylene gave **thioacetyl-3-a-naphthylurea(60%),** mp **233'.**

Acknowledgment. The author is grateful to Dr. N. Mojdehi the chancellor of the Meshed University for his constant encouragements.

Registry No. 1, 51933-47-2; 2, 3553-47-7; 3, 51933-48-3; 4, 51933-49-4; 5, 51933-50-7; 6, 51933-51-8; 7, 51933-52-9; 8, 4875-18- **7; 9, 51933-53-0; 10, 51933-54-1;** RC(S)NH2 (R = CHz), **62-55-5;** $RC(S)NH_2$ (R = C₆H₅), 2227-79-4; $RC(S)NH_2$ (R = p-CH₃C₆H₄), 2362-62-1; $RC(S)NH_2$ (R = α -C₁₀H₇), 20300-10-1; OCNAr (Ar = α -C₁₀H₇), 86-84-0; **OCNAr** (Ar = C₆H₅), 103-71-9; **OCNAr** (Ar = p-C1CsH4), **104-12-1.**

References and Notes

- (1) B. Kuhn, *Ber.,* **17, 2880 (1884). (2)** B. Kuhn, *Ber.,* **18, 1476 (1885).**
-
-
- (3) P. F. Wiley, *J. Amer. Chem. Soc.,* **71,** 1310 (1949).
(4) J. Goerdeler and H. Horstmann, *Chem. Ber.*, **93,** 663 (1960).
(5) J. Goerdeler and H. Schenk, *Chem. Ber.,* **99,** 782 (1966).
- **(6) 0.** Tsuge, M. Tashire, **R.** Mlzuguchi, and S. Kanemasa, *Chem. Pharm.*
-
- *Bull. (Tokyo),* **14, 1055 (1966).**
-
- (7) J. Goerdeler and H. Schenk, *Chem. Ber.,* 98, 2954 (1965).
(8) J. Goerdeler and H. Schenk, *Chem. Ber.,* 98, 3831 (1965).
(9) A. E. S. Fairfull, J. L. Lowe, and D. A. Peak, *J. Chem. Soc.*, 742 (1952).

Pyrolysis of a Tropane Analog of Pethidine. A Novel 7-Azabicyclo[4.2.l]nonane Derivative

J. E. Coates

Faculty *of* Pharmacy and Pharmaceutical Sciences, University *of* Alberta, Edmonton, *T6G 2H7,* Canada

A. F. Casy*

School *of* Pharmacy, Liverpool Polytechnic, Liverpool L3 3AF, United Kingdom

Received May 13,1974

We recently undertook a conformational analysis of *3-p*carbethoxy-3- α -phenyltropane hydrochloride (1) ,¹ a tropane analog of pethidine, as part of our interest in the stereochemistry of narcotic analgesics based on 4-phenylpiperidine.2 The ethyl ester hydrochloride **1,** prepared from 3-tropinone,3 melted within the reported range (192.5 l!93 *.5O)* but with evolution of gas, behavior not originally described. Pyrolysis of 1 was therefore investigated on a larger scale and a nonbasic solid isolated from the thermolysate. This product is assigned the structure 7-aza-3 **chloro-7-methyl-l-phenyl-8-oxobicyclo[4.2,l]nonane (2)** on the following grounds: (i) elemental analysis; (ii) the M^+ (263) and $M^+ + 2$ (265) ions in its mass spectrum had the